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Abstract

Machine vision-based weed detection relies on features such as plant colour, leaf

texture, shape, and patterns. Drought stress in plants can alter leaf colour and mor-

phological features, which may in turn affect the reliability of machine vision-based

weed detection. The objective of this research was to evaluate the feasibility of using

deep convolutional neural networks for the detection of Florida pusley (Richardia

scabra L.) growing in drought stressed and unstressed bahiagrass (Paspalum natatum

Flugge). The object detection neural networks you only look once (YOLO)v3, faster

region-based convolutional network (Faster R-CNN), and variable filter net (VFNet)

failed to effectively detect Florida pusley growing in drought stressed or unstressed

bahiagrass, with F1 scores ≤0.54 in the testing dataset. Nevertheless, the use of the

image classification neural networks AlexNet, GoogLeNet, and Visual Geometry

Group-Network (VGGNet) was highly effective and achieved high (≥0.97) F1 scores

and recall values (≥0.98) in detecting images containing Florida pusley growing in

drought stressed or unstressed bahiagrass. Overall, these results demonstrated the

effectiveness of using an image classification convolutional neural network for

detecting Florida pusley in drought stressed or unstressed bahiagrass. These findings

illustrate the broad applicability of these neural networks for weed detection.
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1 | INTRODUCTION

Bahiagrass (Paspalum natatum Flugge), native to South America, is a

perennial warm-season species widely grown in the tropical and sub-

tropical regions of the world (Burton, 1989). Apart from being grown

as a forage crop in pastures and rangelands (Burton, 1982), bahiagrass

is an important turfgrass species for residential lawns and highway

rights-of-way (Altpeter & James, 2005; Zhang et al., 2015). In bahia-

grass turf, weeds adversely impact turfgrass aesthetics and functional-

ity. In bahiagrass pastures and rangelands, weed infestations can

significantly reduce forage quality (Ferrell et al., 2006). Moreover,

certain weeds infesting bahiagrass pastures can be toxic to livestock

(Evers, 1983). For example, in the southern United States, creeping

indigo (Indigofera spicata Forssk.), commonly found in bahiagrass, is

toxic to horses. Although weeds naturally occur in patches, herbicides

are typically broadcast-sprayed across the entire field area for weed

control. Manual spot-spraying can reduce herbicide input as it delivers

the herbicide only onto weeds; nevertheless, manual spot-spraying in

large fields is difficult and impractical.

In recent years, deep learning has emerged as an incredible tool in

various scientific applications, such as natural language processing

(Collobert et al., 2011), speech recognition (Dahl et al., 2012;
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Graves et al., 2013), and computer vision (Jordan & Mitchell, 2015;

Krizhevsky et al., 2012; LeCun et al., 2015). The deep convolutional

neural networks (DCNNs) are one of the most common deep learning

tools used in machine learning applications (LeCun et al., 2015). Com-

pared to other types of neural networks, such as feedforward neural

networks, DCNNs require fewer artificial neurons (Jordan &

Mitchell, 2015; Krizhevsky et al., 2012; LeCun et al., 2015). Schmidhu-

ber (2015) showed that DCNNs have exceptional image classification

and object detection capability. In the 2012 ImageNet competition,

DCNNs performed exceptionally in classifying a dataset containing

1.3 million high-resolution images with 1000 classes (Krizhevsky

et al., 2012). The availability of graphics processing units (GPU) and

the opportunity for training on large datasets have facilitated the use

of DCNNs (LeCun et al., 2015).

Several studies have documented the excellent performance of

DCNNs for weed detection in various cropping systems (Grinblat

et al., 2016; Teimouri et al., 2018; Sharpe et al., 2019, 2020; Yu, Sharpe,

et al., 2019a; Yu, Schumann, et al., 2019b; Yu et al., 2020; Wang

et al., 2019). For example, dos Santos Ferreira et al. (2017) documented

>98% accuracy with a DCNN model for the detection of various broad-

leaf and grass weeds in relation to soybean (Glycine max [L.] Merr.) and

soil. Sharpe et al. (2020) reported a DCNN model that reliably detected

goosegrass (Eleusine indica [L.] Gaertn.) in plastic-mulched strawberry

(Fragaria � ananassa Duch.) and tomato (Solanum lycopersicum L.). Yu,

Sharpe, et al. (2019a); Yu, Schumann, et al. (2019b) developed neural net-

work models that can reliably detect weeds in bermudagrass (Cynodon

dactylon [L.] Pers.) and perennial ryegrass (Lolium perenne L.). Machine

vision-based weed detection is based on numerous characteristics

including, but not limited to, plant colour, pattern, and leaf morphological

features such as size, shape, and texture (Chaki et al., 2015; Espejo-

Garcia et al., 2020). However, leaf morphological features may be

affected by environmental factors such as drought, which may affect the

performance of machine learning models.

Smart weeding systems rely on machine vision to recognize

weeds in digital images (Fennimore et al., 2016; Fennimore &

Cutulle, 2019; Su et al., 2019; Wang et al., 2019). In turf systems, sev-

eral studies have been conducted on weed detection using DCNNs

(Xie et al., 2021; Yu et al., 2020). However, the majority of the existing

studies were done under non-stress conditions, and it is unclear how

stress conditions such as drought might affect the performance of the

deep learning models. Drought stress can significantly alter leaf colour

and morphological features (Hartfield, 2017; Zhang et al., 2015),

which may substantially affect the performance of machine vision

models for weed detection, perhaps due to increased complexity for

feature extraction. Under severe drought conditions, bahiagrass may

become dormant, suspending its growth and becoming physiologically

inactive (Huang et al., 2014). Likewise, drought conditions are also

expected to affect the morphological features of the Florida pusley

being detected, even though it may not be as severe as bahiagrass.

Thus, it is imperative to investigate how environmental factors such

as drought stress can influence deep learning models.

Both object detection and image classification DCNNs can be uti-

lized as a smart herbicide sprayer's machine vision decision system

(Yu, Schumann, et al., 2019b). Object detection neural networks per-

mit the localization of individual weeds, and therefore the nozzles

generating narrow spraying outputs can be employed to deliver herbi-

cides onto the weeds. However, training object detection neural net-

works require labeling individual weeds with bounding boxes and

therefore is labor-intensive and time-consuming. Grid cells could be

created on the input images, and the developed image classification

neural networks can be employed to detect if the grid cells contain

the target weeds. When image classification neural networks are

utilized in the machine vision subsystem of the smart sprayers,

herbicides need to be delivered using the nozzles that can generate

the same or larger spraying outputs to cover the grid cells.

Florida pusley (Richardia scabra L.) is an important weed in warm-

season turfgrasses such as bahiagrass. Its range in the United States

extends from Florida to Virginia in the north and Texas in the west.

Dry conditions can be expected during the spring months in Florida,

wherein Florida pusley can outcompete bahiagrass and form a mat.

Developing a machine vision-based model that can detect this weed

in bahiagrass, especially under a range of soil moisture stress condi-

tions, can be useful for in-situ weed detection and precision herbicide

applications. To the best of our knowledge, no research has investi-

gated the impact of drought stress on the performance of DCNNs for

weed detection in any cropping system. The objective of this research

was to evaluate the performance of object detection and image classi-

fication DCNNs for the detection of Florida pusley in bahiagrass

under a range of drought stress conditions.

2 | MATERIALS AND METHODS

2.1 | Image preparation

The images of Florida pusley in bahiagrass under a range of drought

stress conditions were acquired during multiple time periods from

March to August 2018 (Table 1). Florida pusley training images were

taken at the Gulf Coast Research and Education Center (GCREC) in

Balm, Florida (27.71�N, 82.29�W), and at several institutional and resi-

dential lawns, sport fields, and roadsides in Riverview, Florida (27.86�N,

82.32�W). The testing images were collected at multiple commercial

and residential lawns in Riverview, Florida, and the University of South

Florida campus in Tampa, Florida (27.95�N, 82.45�W).

The training and testing images at a ground sampling distance of

0.05 cm pixel�1 were acquired at approximately 1.5 m above the

ground surface using a digital camera (DSC-HX1, SONY® Cyber-Shot

Digital Still Camera, SONY Corporation, Minato, Tokyo, Japan) at a

ratio of 16:9 with a resolution of 1920 � 1080 pixels. The training

and testing images were captured 90 degrees from the ground surface

during the daytime in sunny, cloudy, and partially cloudy outdoor light

conditions.

For the purpose of this study, all training and testing images con-

taining Florida pusley growing in bahiagrass were grouped into three

categories of drought stress: Severe, moderate, and unstressed

(Figure 1). Severe drought stress condition indicates ≤10% visual
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bahiagrass green foliage coverage in the image area, and bahiagrass is

largely in drought-induced dormancy; medium stress represents

bahiagrass with substantial visual foliage discoloration/yellowing,

yet showed at least 30% visual green foliage coverage in the image

area; unstressed condition represents actively growing bahiagrass

without any moisture stress or visual symptom of foliage discolor-

ation/yellowing. The images described in Table 1 were randomly

selected to create the training, validation, and testing datasets

(TDs) for the object detection and image classification neural net-

works investigated here. Figure 2 outlines the sequence diagram of

image processing, training, and testing object detection and image

classification neural networks for detecting Florida pusley growing

in various stressed bahiagrass.

2.2 | Object detection

Three object detection deep learning architectures, including you only

look once (YOLO) version 3 (Redmon & Farhadi, 2018), Faster R-CNN

(Ren et al., 2017), and variable filter net (VFNet, Ahmed et al., 2019)

were investigated for weed detection. YOLOv3 is a widely used

single-stage object detector (Redmon & Farhadi, 2018). YOLOv3 was

designed based on YOLO (Redmon et al., 2017) and YOLO Version 2

(Redmon & Farhadi, 2017). The inference time was the top priority

when YOLOv3 was designed (Redmon & Farhadi, 2018). Faster R-

CNN can achieve a near real-time frame detection speed (Ren et al.,

2017). It shares the convolutional features of region proposal network

and Fast R-CNN (Ren et al., 2017). VFNet utilizes the application of

TABLE 1 Specifics of the training and testing images used in this study

Dataset typea Turfgrass condition Image numbersb Image acquisition date Location

Training Medium drought stressed 560, 1431, 437, 186 3 March 2018, 12 March

2018, 6 April 2018, 8 April

2018

GCREC, Balm, Florida; Riverview high

school, Riverview, Florida

Training Severe drought stressed 120, 894 9 April 2018, 13 May 2018 GCREC, Balm, Florida; Riverview high

school, Riverview, Florida

Training Unstressed 370, 516, 70 23 July 2018, 24 July 2018,

11 August 2018

GCREC, Balm, Florida

Testing Medium drought stressed 30, 60 9 March 2018, 7 April 2018 University of South Florida campus,

Tampa, Florida

Testing Severe drought stressed 60 14 March 2018 Commercial and residential turfgrass sites

at Riverview, Florida

Testing Unstressed 50, 50 20 July 2018, 16 August

2018

University of South Florida campus,

Tampa, Florida

Abbreviation: GCREC, Gulf Coast Research and Education Center.
aTraining, validation, and testing datasets consisted of randomly selected training and testing images.
bThe image numbers correspond to each acquisition date specified in the next column.

F IGURE 1 Images containing Florida
pusley growing in bahiagrass at severe
drought stressed (a), medium drought
stressed (b), and unstressed (c, d)

conditions. The appearance of Florida
pusley at the pre-flowering (c) and
flowering stages (d).

216 ZHUANG ET AL.



variable filter sizes in addition to the audio spectrograms and thus can

capture a hierarchy of audio features (Ahmed et al., 2019). VFNet was

initially developed for accent recognition (Ahmed et al., 2019), but its

feasibility for weed detection was examined in the present research.

All training and testing images were resized to 1280 � 720 pixels

using Irfanview (version 5.5, Irfan Skijan, Jaice, Bosnia). A total of 1200

images (400 images for each drought stress category) were randomly

selected and used for training the neural networks. During training, a

total of 10% of available training images were randomly selected and

used as the validation dataset (VD). For each stress category, a total of

60 images were randomly selected and used as the TD.

The areas in the training and testing images containing Florida

pusley were annotated (bounding-box annotation) with LabelImg

(an open-source software available at https://github.com/tzutalin/

labelImg). A total of 5725, 321, and 309 bounding boxes were anno-

tated for training, validation, and testing, respectively. YOLOv3, Fast

R-CNN, and VFNet were pre-trained using the Microsoft Common

Object in Context (COCO) dataset (Lin et al., 2014). The COCO

contains high-quality labelled image datasets and is commonly used to

benchmark algorithms to compare the performance of neural net-

works for object detection. Model training and testing were con-

ducted with the mmDetection based on the Pytorch deep learning

framework (an open-source software available at https://pytorch.org/

) on a computer equipped with NVIDIA GeForce RTX 2080 Ti GPU.

The intersection of union (IoU) between predicted bounding boxes

and ground-truth labels with a threshold of 0.5 was employed to

determine if the object detected was a true positive (Tao et al., 2016).

The neural networks were trained until mean average precision, preci-

sion, and recall values ceased to increase or the average loss error

ceased to decrease. The hyper-parameters used during training are

presented in Table 2.

2.3 | Image classification

The objective of this study was to examine the feasibility of using the

image classification neural networks to detect Florida pusley in severe

drought stressed, medium drought stressed, and unstressed bahia-

grass. Three image classification architectures, including AlexNet

(Krizhevsky et al., 2012), GoogleNet (Szegedy et al., 2015), and

VGGNet (Simonyan & Zissrman, 2014), were evaluated for weed

detection. AlexNet consists of eight layers in which the first five layers

are convolutional, and the other three layers are fully connected

(Krizhevsky et al., 2012). GoogLeNet consists of a total of 22 convolu-

tional layers with nine inception modules. GoogLeNet learns the

convolutional filter entries by stochastic gradient descent (SGD)

algorithms (Szegedy et al., 2015). The VGGNet utilized in this

study was VGG16, consisting of very small convolution filters with 13

convolutional layers and three fully connected layers (Simonyan &

Zisserman, 2014).

F IGURE 2 Flow diagram illustrates the sequential order of image processing, training, and testing the object detection and image
classification neural networks. Faster R-CNN, faster region-based convolutional network; TD, testing dataset; VD, validation dataset; VFnet,
variable filter net; VGGNet, Visual Geometry Group-Network; YOLO, you only look once.
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The images containing a single weed species were used for train-

ing and testing the image classification neural networks. All images

were cropped into 420 � 240 pixels using irfanview. The cropped

images were randomly selected and used in the training and TDs. For

constituting the training dataset, the true positive images included a

total of 9000 images containing Florida pusley, with 3000 images at

each of the three water stress conditions (i.e., unstressed, moderate

stress, severe stress); and the true negative images included a total of

9000 images containing bahiagrass without weeds, with 3000 images

at each of the three water stress conditions.

To evaluate the reliability of using the image classification neural

network for the detection of Florida pusley growing in bahiagrass at

various water stress conditions, VD or TD contained a total of

450 positive images (150 images contained Florida pusley growing in

bahiagrass at each of the three water stress conditions) and 450 nega-

tive images (150 images contained bahiagrass without weeds at each

of the three water stress conditions). An additional TD containing a

total of 150 positive and 150 negative images was used to evaluate

the reliability of detecting Florida pusley growing in either severe

drought stressed, medium drought stressed, or unstressed bahiagrass.

The training and testing were performed in the NVIDIA Deep

Learning GPU Training System (DIGITS) (version 6.1.1, NVIDIA, Santa

Clara, CA, USA) using the convolutional architecture for fast feature

embedding (Caffe) (Jia et al., 2014). The computer that was used in

TABLE 2 Hyperparameters used for training object detection and image classification neural networks

Neural network Network type Base learning rate Learning rate policy Gamma Solver type Training epochs

YOLO-v3 Object detection 0.001 Step down 2.0 SGD 273

Faster R-CNN Object detection 0.02 Step down 2.0 SGD 24

VFNet Object detection 0.01 Step down 2.0 SGD 24

AlexNet Image classification 0.01 Step down 0.1 SGD 60

GoogleNet Image classification 0.01 Step down 0.1 SGD 60

VGG Image classification 0.02 Exponential decay 0.95 AdaDelta 30

Abbreviations: Faster R-CNN, faster region-based convolutional network; SGD, stochastic gradient descent; VFNet, variable filter net; VGG, Visual

Geometry Group; YOLO, you only look once.

F IGURE 3 The schematic of image classification deep convolutional neural networks (DCNN) used in this study for detection of Florida
pusley in bahiagrass under various drought stress conditions: True negative images (images without weeds) included the sub-images of severe
drought stressed, medium drought stressed, and unstressed bahiagrass; true positive images included Florida pusley growing in severe drought
stressed, medium drought stressed, and unstressed bahiagrass; testing images with Florida pusley growing in severe, medium, and unstressed
bahiagrass.
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the training and testing experiments had a GeForece RTX 2080 Ti

with 64 GB of memory and Intel® CoreTM i9-10,920X CPU @

3.50 GHz x 24. Three image classification architectures, including

AlexNet, GoogLetNet, and VGGNet, were pre-trained using the Ima-

geNet database (Deng et al., 2009). Previous studies have shown that

transfer learning effectively assists weed detection (Espejo-Garcia

et al., 2020; Sharpe et al., 2019). These neural networks were selected

for training because of their accessibility and effectiveness to train in

the DIGITS. For training AlexNet and GoogLeNet, the neural networks

were trained with the best combination of hyper-parameters that

yielded the highest overall accuracy in the preliminary tests (data not

shown). For training VGGNet, the hyper-parameters were selected

based on previous reports, resulting in an excellent overall accuracy of

weed detection (Yu et al., 2020; Yu, Schumann, et al., 2019b; Yu,

Sharpe, et al., 2019a). For all neural networks, various training epochs

(10, 20, 30, 50, and 60) were examined in the preliminary work (data

not shown), and the training epochs that yielded the highest classifica-

tion accuracy are presented. The hyper-parameters used for training

AlexNet, GoogLeNet, and VGG16 are presented in Table 1. Figure 3

illustrates the method used for training and testing the image classifi-

cation neural networks.

2.4 | Statistical parameters

For both image classification and object detection neural networks, vali-

dation and testing results were arranged in a confusion matrix consisting

of four conditions: A true positive (TP), a true negative (TN), a false posi-

tive (FP), and a false negative (FN) (Table 3). The performances of the

neural networks were measured with precision, recall, and F1 score.

These metrics are commonly utilized to evaluate neural networks' effec-

tiveness for weed detection in turfgrass (Yu et al., 2020; Yu, Schumann,

et al., 2019b; Yu, Sharpe, et al., 2019a) and other cropping systems (Liu &

Bruch, 2020; Sharpe et al., 2019, 2020). Precision measures the accuracy

of neural network for positive prediction and was computed using the

following equation (Sokolova & Lapalme, 2009):

Precision¼ TP
TPþFP:

Recall measures the effectiveness of the neural networks in

detecting the target and was computed using the following equation

(Sokolova & Lapalme, 2009):

Recall¼ TP
TPþFN

F1 score, the harmonic mean of the precision and recall, represents

the overall evaluation of the network's positive labels. The F1 score

was computed using the following equation (Sokolova &

Lapalme, 2009):

F1Score¼2�Precision�Recall
PrecisionþRecall

3 | RESULTS AND DISCUSSION

The evaluated object detection neural networks performed poorly

at detecting Florida pusley growing in bahiagrass (Table 4). Because

of low precision and recall, the F1 scores of YOLOv3, Faster R-

CNN, and VFNet never exceeded 0.56, 0.53, and 0.53, respectively,

in the VD. For all stress conditions, the F1 scores of YOLOv3, Fas-

ter R-CNN, and VFNet never exceeded 0.54, 0.52, and 0.51,

respectively, in the TD. The low precision means that the neural

networks are more likely to mistakenly identify bahiagrass as

weeds, resulting in herbicide application on the bahiagrass area

where weeds do not occur. Low recall indicates that the target

weeds are prone to be misidentified, leading to poor herbicide cov-

erage in field applications.

In previous studies, DetecNet achieved high F1 scores in detecting

various weeds in dormant bermudagrass (Yu, Sharpe, et al., 2019a) and

in detecting dandelion (Taraxacum officinale Web.) in actively growing

perennial ryegrass (L. perenne L.) (Yu, Schumann, et al., 2019b). Sharpe

et al. (2019) noted that YOLOv3 effectively detected and discriminated

broadleaves, grasses, and sedges (Cyperus spp.) growing in the row-

middles of plastic-mulched vegetables. In the present study, the training

and testing images containing Florida pusley at various growth stages

in drought stressed or unstressed bahiagrass have increased computa-

tional complexity for feature extraction and thus decreased the preci-

sion and recall of the neural networks. Moreover, in the present study,

the object detection neural networks were trained using a training data-

set that contained severe drought stressed, medium drought stressed,

and unstressed bahiagrass. Perhaps, training the object detection neural

network using a training dataset containing only a particular water

stress condition may increase weed detection performance and warrant

further investigation.

It was reported that the annotation method used in the prepara-

tion of the training dataset could significantly affect the reliability of

object detection neural networks for weed detection (Sharpe

et al., 2018, 2020). For instance, Sharpe et al. (2020) reported that

annotation methods could affect the accuracy of neural networks for

the detection of goosegrass (E. indica [L.] Gaertn.) growing in plastic-

mulched strawberry and tomato (S. lycopersicum L.). The authors

reported that YOLOv3-tiny trained with the annotation of individual

goosegrass leaf blades demonstrated superior detection accuracy than

the neural network trained with annotating the entire goosegrass

plant. In the present study, annotation of the training dataset was

TABLE 3 Confusion matrix used for calculating the statistical
parameters

Actual values

Bahiagrass Weed

Predicated values Bahiagrass TN FP

Weed FN TP

Abbreviations: FN, false negative; FP, false positive; TN, true negative; TP,

true positive.
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performed based on the image area containing Florida pusley plants

rather than the individual plants or leaves. This annotation method

was adopted because annotating individual leaves in the software

used here was impractical. In other research, Xie et al. (2021) con-

structed and applied a skeleton-based probabilistic map for the detec-

tion of nutsedges (Cyperus spp.) in bermudagrass turf. They have

generated high-fidelity synthetic data to reduce annotation costs. An

additional study is needed to evaluate this approach's feasibility for

detecting weeds in bahiagrass.

Because of the poor performance of object detection neural net-

works, we further explored the feasibility of using image classification

neural networks for detecting images containing Florida pusley in

bahiagrass. Although the training and testing images contained Florida

pusely growing in severe drought stressed, medium drought stressed,

and unstressed bahiagrass, a single image classification neural network

AlexNet, GoogLeNet, and VGGNet achieved high F1 scores (0.99)

with high precision (0.99) and recall (1.00) in the VD and TD (Table 5).

These results suggest that a single image classification neural network

can detect Florida pusley growing in various levels of water stressed

turfgrass. For detection of Florida pusley growing in either severe

drought stressed, medium drought stressed, or unstressed bahiagrass,

the precision and recall values of AlexNet were ≥0.95 and ≥0.98,

respectively (Table 6). In previous research, Yu, Schumann, et al.

(2019b) reported that the ratio between positive and negative images

could affect the performance of deep learning neural networks for

weed detection. In the present study, although the number of positive

and negative images in the training dataset was selected arbitrarily,

the neural networks demonstrated excellent performance for classify-

ing images that did or did not contain weeds.

Previous studies suggest that deep learning-based weed detection

methods generally outperform other weed detection techniques

(Fennimore et al., 2016; Grinblat et al., 2016; Peteinatos et al., 2014;

Sharpe et al., 2018, 2019; Teimouri et al., 2018; Wang et al., 2019). For

instance, techniques such as 2D image-processing, relying on the

detection of multiple factors including plant size, colour, infrared to red

light reflectance ratios, have been used for weed detection in robotic

weeding platforms, but such techniques perform well under uniform

crop stands, with relatively low weed densities (Fennimore et al., 2016).

Turfgrass may present erratic surface conditions due to drought

stress, traffic, dormancy, or varying management practices such as

fertilization and mowing. Due to its drought tolerance, Florida pusley

(R. scabra L.) can thrive in drought-impacted bahiagrass, even though

bahiagrass may undergo severe foliage desiccation. The present study

results demonstrate that image classification DCNNs can be used to

reliably detect Florida pusley growing in varying turfgrass surface con-

ditions. Additionally, in the present study, the training and testing

TABLE 4 Object detection neural network validation and testing results for detection of Florida pusley in bahiagrass under various water
stress conditionsa

VD TD

Neural network Turfgrass condition Precision Recall F1 score Precision Recall F1 score

YOLO-v3 Severe drought stressed 0.61 0.51 0.56 0.55 0.46 0.50

Medium drought stressed 0.50 0.29 0.37

Unstressed 0.62 0.48 0.54

Faster R-CNN Severe drought stressed 0.59 0.49 0.53 0.53 0.45 0.49

Medium drought stressed 0.45 0.37 0.41

Unstressed 0.57 0.48 0.52

VFNet Severe drought stressed 0.55 0.51 0.53 0.48 0.39 0.43

Medium drought stressed 0.37 0.38 0.38

Unstressed 0.53 0.50 0.51

Abbreviations: Faster R-CNN, faster region-based convolutional network; TD, testing dataset; VD, validation dataset; VFNet, variable filter net; YOLO, you

only look once.
aThe neural networks were trained to detect Florida pusley in bahiagrass at each water stress condition.

TABLE 5 Image classification neural
network validation and testing results for
detection of Florida pusley in bahiagrass
under various water stress conditionsa

VD TD

Neural network Precision Recall F1 score Precision Recall F1 score

AlexNet 0.99 1.00 0.99 0.99 1.00 0.99

GoogleNet 0.99 1.00 0.99 0.99 1.00 0.99

VGG 0.99 1.00 0.99 0.99 1.00 0.99

Abbreviations: TD, testing dataset; VD, validation dataset; VGG, Visual Geometry Group.
aThe VD or TD contained a total of 450 positive images (150 images for each of the three stress

conditions: severe stress, moderate stress, and no stress) and 450 negative images containing bahiagrass

without weeds (the number of negative images for each water stress condition was equal to that of the

number of positive images).
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images contained Florida pusley at various growth stages (Figure 1).

The results demonstrated that image classification neural networks

are effective for detecting the subimages contain various growth

stages of Florida pusley with distinct plant morphological features in

erratic bahiagrass turf surfaces.

Various herbicides, such as 2,4-D, carfentrazone, dicamba, and

mecoprop, are used for postemergence (POST) control of broadleaf

weeds in bahiagrass (Akanda et al., 1997; Costa et al., 2010; da

Silva et al., 2016). Spraying these herbicides with machine vision-

based precision technology can substantially reduce herbicide

input and weed control costs. It should be noted that although the

evaluated image classification neural networks effectively detected

Florida pusley in bahiagrass, reliable weed detection in unstressed

turfgrass is more critical. This is because POST herbicides may

injure turfgrass when the turfgrass suffers from abiotic and/or

biotic stress (Johnson, 1994; Murphy, 1994). Therefore, it is

recommended spraying the POST herbicides with the smart

sprayer when the turfgrass is not under stress.

4 | CONCLUSIONS

In summary, the present research demonstrated the reliability and

effectiveness of using image classification neural networks to

detect Florida pusley growing in drought stressed or unstressed

bahiagrass. However, object detection neural networks including

YOLOv3, Faster R-CNN, and VFNet exhibit low accuracy for

detecting Florida pusley in drought stressed or unstressed bahia-

grass. This is likely due to the increased complexity of the image

background under water stressed conditions. Image classification

overcame this limitation and effectively detected Florida pusley

regardless of water stress conditions. It is worth noting that this

is the first report evaluating the impact of turfgrass growth

conditions on the performance of DCNNs for weed detection.

The developed networks demonstrated the feasibility for in-situ

detection of weeds growing in drought stressed or unstressed

bahiagrass, which can be utilized for autonomous weed detection

and precision herbicide application under varying soil moisture

conditions.
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